Abstract

We numerically determine the robustness of the lasing edge modes in a spin-torque oscillator array that realizes the non-Hermitian Su-Schrieffer-Heeger model. Previous studies found that the linearized dynamics can enter a topological regime in which the edge mode is driven into auto-oscillation, while the bulk dynamics are suppressed. Here we investigate the full non-linear and finite-temperature dynamics, whose understanding is essential for spin-torque oscillators-based applications. Our analysis shows that the lasing edge mode dynamics persist in the non-linear domain for a broad range of parameters and temperatures. We investigate the effects of perturbations relevant to experimental implementations and discuss which ones might be detrimental to the stability of the lasing edge mode. Finally, we map our model onto a photonic model. Our analysis has the potential to shed light onto the dynamics of a plethora of non-Hermitian systems with non-linearities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.