Abstract

We develop a new technique describing the non linear growth of interfaces. We apply this analytical approach to the one dimensional Cahn-Hilliard equation. The dynamics is captured through a solvability condition performed over a particular family of quasi-static solutions. The main result is that the dynamics along this particular class of solutions can be expressed in terms of a simple ordinary differential equation. The density profile of the stationary regime found at the end of the non-linear growth is also well characterized. Numerical simulations are compared in a satisfactory way with the analytical results through three different fitting methods and asymptotic dynamics are well recovered, even far from the region where the approximations hold.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.