Abstract

In this work, we experimentally investigate the nonlinear dynamics of an interband cascade laser (ICL) under variable-aperture optical feedback implemented by a gold mirror combining with a ring-actuated iris diaphragm (RAID). By continuously varying the diameter of RAID (DR), the evolution of the dynamical state of ICL with the aperture of the optical feedback can be inspected. The characteristics of each dynamical state are characterized by time series, power spectra, phase portraits, and Lyapunov exponents. The results show that, with the decrease of DR, the dynamical state of the ICL under variable-aperture optical feedback presents an evolution from complex, simple to stable. Diverse dynamical states including period one state (P1), period two state (P2), multi-period state (MP), quasi-period state (QP), low-frequency fluctuation (LFF), chaotic state (C), and hyperchaos have been observed. Through mapping the evolution of dynamical states with DR for the ICL biased at different currents, different evolved routes of the dynamical states are revealed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call