Abstract

In the present letter we describe a model of nonlinear dynamics of microtubules (MTs) assuming a single longitudinal degree of freedom per tubulin dimer. This is a longitudinal displacement of a dimer at a certain position with respect to the neighbouring one. A nonlinear partial differential equation, describing dimer's dynamics within MT, is solved both analytically and numerically. It is shown that such a nonlinear model can lead to the existence of kink solitons moving along the MTs. The internal electrical field strength is calculated using two procedures and a perfect agreement between the results is demonstrated. This enabled the estimation of the total energy, kink velocity and kink width. To simplify the calculation of the total energy we stated and proved a useful auxiliary theorem.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call