Abstract

This paper investigates the mass sensing capability of an array of a few identical electrostatically actuated microbeams, as a first step toward the implementation of arrays of thousands of such resonant sensors. A reduced-order model is considered, and Taylor series are used to simplify the nonlinear electrostatic force. Then, the harmonic balance method associated with the asymptotic numerical method, as well as time integration or averaging methods, is applied to this model, and its results are compared. In this paper, two- and three-beam arrays are studied. The predicted responses exhibit complex branches of solutions with additional loops due to the influence of adjacent beams. Moreover, depending on the applied voltages, the solutions with and without added mass exhibit large differences in amplitude which can be used for detection. For symmetric configurations, the symmetry breaking induced by an added mass is exploited to improve mass sensing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.