Abstract
We present an investigation of the nonlinear dynamics of clamped-clamped micromachined arches when actuated by a dc electrostatic load superimposed on an ac harmonic load. The Galerkin method is used to discretize the distributed-parameter model of a shallow arch to obtain a reduced-order model. The static response of the arch due to a dc load actuation is simulated, and the results are validated by comparing them to experimental data. The dynamic response of the arch to a combined dc load and ac harmonic load is studied when excited near its fundamental natural frequency, twice its fundamental natural frequency, and near other higher harmonic modes. The results show a variety of interesting nonlinear phenomena, such as hysteresis, softening behavior, dynamic snap-through, and dynamic pull-in. The results are also shown demonstrating the potential to use microelectromechanical systems (MEMS) arches as bandpass filters and low-powered switches. An experimental work is conducted to test arches realized of curved polysilicon microbeams when excited by dc and ac loads. Experimental data are shown for the softening behavior and the dynamic pull-in of the curved microbeams.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.