Abstract

Nonlinear dynamics of flexible multibeam structures modeled as an L-shaped beam are investigated systematically considering the modal interactions. Taking into account nonlinear coupling and nonlinear inertia, Hamilton’s principle is employed to derive the partial differential governing equations of the structure. Exact mode functions are obtained by the coupled linear equations governing the horizontal and vertical beams and the results are verified by the finite element method. Then the exact modes are adopted to truncate the partial differential governing equations into two coupled nonlinear ordinary differential equations by using Galerkin method. The undamped free oscillations are studied in terms of Jacobi elliptic functions and results indicate that the energy exchanges are continual between the two modes. The saturation and jumping phenomena are then observed for the forced damped multibeam structure. Further, a higher-dimensional, Melnikov-type perturbation method is used to explore the physical mechanism leading to chaotic behaviors for such an autoparametric system. Numerical simulations are performed to validate the theoretical predictions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.