Abstract

In this paper, nonlinear dynamics of Duffing system with fractional order damping is investigated. The four order Runge-Kutta method and ten order CFE-Euler methods are introduced to simulate the fractional order Duffing equations. The effect of taking fractional order on the system dynamics is investigated using phase diagrams, bifurcation diagrams and Poincare map. The bifurcation diagram is also used to exam the effects of excitation amplitude and frequency on Duffing system with fractional order damping. The analysis results show that the fractional order damped Duffing system exhibits period motion, chaos, period motion, chaos, period motion in turn when the fractional order changes from 0.1 to 2.0. A period doubling route to chaos is clearly observed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.