Abstract
In this study, the nonlinear vibrations of an axially moving beam are investigated by considering the coupling of the longitudinal and transversal motion. The Galerkin method is used to truncate the governing partial differential equations into a set of coupled nonlinear ordinary differential equations. By detuning the axially velocity, the exact parameters with which the system may turn to internal resonance are detected. The method of multiple scales is applied to the governing equations to study the nonlinear dynamics of the steady-state response caused by the internal–external resonance. The saturation and jump phenomena of such system have been reported by investigating the nonlinear amplitude–response curves with respect to external excitation, internal, and external detuning parameters. The longitudinal external excitation may trigger only longitudinal response when excitation amplitude is weak. However, beyond the critical excitation amplitude, the response energy will be transferred from the longitudinal motion to the transversal motion even the excitation is employed on the longitudinal direction. Such energy transfer due to saturation has the potential to be used in the vibration suppression.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.