Abstract
Impact dampers or vibration systems with gaps are common in engineering applications, and the impact effects introduced by the gaps make such systems strongly nonlinear. In this paper, a model with an elastic stop is established, considering the stiffness and damping characteristics of the stop, which is a novel kind of impact damper and can be applied in a rotor system. The amplitude–frequency and phase–frequency response of the system at different gaps are obtained by the harmonic balance method with the alternating frequency–time scheme (HBM-AFT). The stability of the periodic solution is analyzed by the Floquet theory, and the time history and frequency spectra of the unstable point are analyzed by the numerical integration method. In the results, there can be more than one steady-state response at unstable points for a given excitation frequency, and the jump phenomenon occurs. The elastic stop is effective in the vibration amplitude suppression if its stiffness has been designed properly. This study provides an insight into the dynamic responses and its applications of the system with gaps, which is guidance for the analysis of pedestal looseness faults and vibration suppress methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.