Abstract

The parametric instability of a rotor-bearing system with coupling faults of crack and rub-impact under nonlinear oil-film force is studied in this paper. A model considering time-varying crack stiffness, rub-impact force and nonlinear oil-film force is put forward to analyze the complicated nonlinear behaviors of the rotor-bearing system. The numerical simulation focuses on the effects of crack depth and the stator stiffness on the onset of instability and nonlinear responses of the rotor-bearing system by using bifurcation diagrams, Poincare maps, largest Lyapunov exponent and frequency spectrum. The multiple periodic, quasiperiodic and chaotic motions are observed in this study. The results indicate that crack depth and stator stiffness have influences on the vibration and instability of the rotor-bearing system with varied rotating speed. The motion of the system with coupling faults shows strong nonlinearity and instability in high speed region. Moreover, crack depth and stator stiffness interfere with the formation of oil whirl, thus, making the oil whirl appear later. There also exists interaction among coupling multiple faults. The research discloses the worthy energy exchange phenomenon of multi-fault system and is helpful for fault diagnosis and vibration control of real rotor-bearing systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.