Abstract

This work investigates numerically and experimentally the nonlinear vibration of a Shape Memory Alloy (SMA)passive damping vibration device, where the main elements are pseudoelastic SMA wires. At first, a one-degree of freedom SMA oscillator, composed of a mass balanced by two pseudoelastic SMA wires, where the configuration was based on the SMA passive damping vibration device, was considered. A thermomechanical constitutive model, based on the thermodynamic framework proposed by Boyd and Lagoudas, was used to predict the constitutive behavior of the SMA wires. The mechanical model was supplemented by simple heat transfer analysis, so that temperature variations caused by martensitic phase transformation and the effect of different frequency responses could be investigated. Numerical simulations of transmissibility curves and temperature variations of SMA oscillator are correlated with experimental results obtained from vibration sine sweep tests.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.