Abstract
We analyse theoretically the nonlinear dynamics of a single-mode laser diode subjected to both optical injection and optical feedback. Detailed mappings of the laser dynamics reveal that, due to optical feedback (OF), the locking boundaries resulting from optical injection (OI) shift towards larger negative detunings and higher injection rates and display a periodic pattern of the injection locking boundaries. We demonstrate how feedback induces a cascade of quasiperiodic bifurcations associated with abrupt dynamic changes, hence altering the route to locking. A close inspection of the laser optical spectra for increasing feedback rate reveals the complex interplay between undamped relaxation oscillations and external cavity frequencies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.