Abstract
Heterarchical control architectures with fully distributed control have been developed in order to improve responsiveness and effectiveness of manufacturing shop-floor control systems. The dynamics of these highly distributed systems have been difficult to predict particularly when control is based on heuristics. In this paper a dynamical model is developed for a single machine processing an arbitrary number of parts. The structure of the system, which requires queuing of parts when they arrive at a machine, leads to nonlinearities such as dead-zone and discontinuities. A continuous arrival time controller of the integrating type is used that results in a system that can be modeled using nonlinear differential equations that can be solved using a method due to Filippov (1960, 1988). This enables prediction of trajectories of part arrival times and derivation of closed form expressions for steady-state values. The analytical model for the dynamics is validated and the dynamic response of the system is illustrated using numerical simulation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.