Abstract
We present a model of condensed phase combustion which attempts to elucidate the effects of spatially localized reaction sites on the propagation of a combustion wave. Heat transfer is assumed to be uniform but exothermic reactions are allowed to occur only at evenly distributed locations, that we refer to as reactant particles. Thus, combustion wave propagation manifests itself as a process of sequential ignition and burning of particles. Green’s functions are used to show that “steady” wave speed is related to particle ignition temperature, particle geometry and the ratio of heat diffusion to reaction times through a single transcendental equation. Furthermore, for the one-dimensional case, the dynamics of this system can be related to a history dependent implicit map f → : R ∞→ R ∞ which determines time to the next ignition. Iteration of this map demonstrates that average wave speed undergoes a period doubling bifurcation to chaos and subsequent extinction. A linear stability analysis of this map is performed to determine the stability boundaries for period 2 n orbits. Additionally, temperature profiles are shown to be in qualitative agreement with experiments which describe a transition from the so-called quasi-homogeneous to relay-race regimes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.