Abstract

The information processing capability of the brain decreases during unconscious states. Capturing this decrease during anesthesia-induced unconsciousness has been attempted using standard spectral analyses as these correlate relatively well with breakdowns in corticothalamic networks. Much of this work has involved the use of propofol to perturb brain activity, as it is one of the most widely used anesthetics for routine surgical anesthesia. Propofol administration alone produces EEG spectral characteristics similar to most hypnotics; however, inter-individual and drug variation render spectral measures inconsistent. Complexity measures of EEG signals could offer better measures to distinguish brain states, because brain activity exhibits nonlinear behavior at several scales during transitions of consciousness. We tested the potential of complexity analyses from nonlinear dynamics to identify loss and recovery of consciousness at clinically relevant timepoints. Patients undergoing propofol general anesthesia for various surgical procedures were identified as having changes in states of consciousness by the loss and recovery of response to verbal stimuli after induction and upon cessation of anesthesia, respectively. We demonstrate that nonlinear dynamics analyses showed more significant differences between consciousness states than spectral measures. Notably, attractors in conscious and anesthesia-induced unconscious states exhibited significantly different shapes. These shapes have implications for network connectivity, information processing, and the total number of states available to the brain at these different levels. They also reflect some of our general understanding of the network effects of consciousness in a way that spectral measures cannot. Thus, complexity measures could provide a universal means for reliably capturing depth of consciousness based on EEG changes at the beginning and end of anesthesia administration.

Highlights

  • The brain performs computations in both linear and nonlinear fashions, and both cognitive and arousal states have been characterized using analyses based on nonlinear dynamics [1,2,3,4,5]

  • We deliberately did not restrict the population studied to a single surgical cohort, in order to better reflect the diversity of patients that would undergo surgical anesthesia, and to demonstrate that nonlinear dynamics tools would be sensitive to brain state

  • When we look at the spectral changes through time we observe the slower dynamic changes in the spectral content throughout loss of response (LOR) (Figs 1B and 3)

Read more

Summary

Introduction

The brain performs computations in both linear and nonlinear fashions, and both cognitive and arousal states have been characterized using analyses based on nonlinear dynamics [1,2,3,4,5]. Recovery of consciousness is associated with much less delta activity and higher amounts of low amplitude, fast activity on awakening, compared to loss of consciousness, indicating a hysteresis of brain states for loss and recovery from anesthesia [16,18], since a more wakeful looking pattern of higher frequency low amplitude activity is seen on awakening. This has been termed ‘neural inertia’ and appears to reflect differential activation of neural networks during these state transitions [19,20]. Frequency domain measures can differ for various classes of anesthetics and adjuvant agents (GABA versus non-GABAergic), in response to surgical stimulation, across age groups, and between people, making spectral domain measurements non-invariant

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call