Abstract

We consider the numerical simulation of the flow between infinite, differentially heated vertical plates with positive stratification. We use a two-dimensional Boussinesq approximation, with periodic boundary conditions in the vertical direction. The relative stratification parameter $${\gamma=(\frac{1}{4}Ra S)^{1/4}}$$ , where Ra is the Rayleigh number and S the adimensional stratification, is kept constant and equal to 8. The Prandtl number is 0.71. We derive a complex Ginzburg-Landau equation from the equations of motion. Coefficients are computed analytically, but we find that the domain of validity of these coefficients is small and rely on the numerical simulation to adjust the coefficients over a wider range of Rayleigh numbers. We show that the Ginzburg-Landau equation is able to accurately predict the characteristics of the periodic solution at moderate Rayleigh numbers. Above the primary bifurcation at Ra = 1.63 × 105, the Ginzburg-Landau model is found to be Benjamin-Feir unstable and to be characterized by modulated traveling waves and phase-defect chaos, which is supported by evidence from the DNS. As the Rayleigh number is increased beyond Ra = 2.7 × 105, nonlinearities become strong and the flow is characterized by cnoidal waves.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.