Abstract

In this work, we investigate the nonlinear dynamics and stability of a machine tool traveling joint. The dynamical system considered includes contacting elements of a lathe joint and the cutting process where the onset of instability is governed by mode coupling. The equilibrium equations of the dynamical system yield a unique fixed point that can change its stability via a Hopf bifurcation. The unstable domain is primarily governed by the cutting tool location, the contact stiffness of the joint and the depth of material to be removed. Self excited vibrations due to a mode coupling instability evolve around the unstable fixed point and one or more limit cycles may coexist in the statically unstable domain. Stability and accuracy of the approximate analytical solutions are analyzed by applying Floquet analysis. Perturbation of the dynamical system with weak periodic excitation results with periodic and aperiodic solutions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.