Abstract
We study the nonlinear forced dynamics of a bistable buckled beam. Depending on the forcing frequency and amplitude, we observe three different regimes: (i) small intra-well oscillations in the neighborhood of one of the equilibria, (ii) transient snap-through ending into intra-well oscillations, (iii) persistent dynamic snap-through. We build experimentally and numerically phase-diagrams determining the forcing amplitude and frequency leading to each of the three regimes. The experiments leverage an original setup based on the use of the electromagnetic Laplace forces. The controlled flow of an electric current through a metallic beam immersed in an electromagnetic field is at the origin of the electromechanical coupling. This non-invasive excitation system allows us to easily tune the forcing frequency and amplitude. The results of our numerical model, based on a weakly nonlinear geometrical approximation and a three-mode Galërkin expansion for the space discretization, are in excellent agreement with the experimental findings. We show that higher-order modes, often neglected in the modal models of the literature, have a major influence on the nonlinear dynamics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.