Abstract

We examine the classical and quantum dynamics of an electron in an anharmonic atomic potential well in the presence of monochromatic laser radiation. The atomic potential is modeled by the inverted Gaussian potential. The radiation induces nonlinear resonances and chaos in the electron phase space. As the laser amplitude increases, regions of chaos grow and a pitchfork bifurcation of a key electron periodic orbit occurs leading to the appearance of three dominant periodic orbits which move apart with increasing laser amplitude. Electron quasibound states in the quantum system are found using complex coordinate scaling and Floquet theory. We show that the bifurcation of periodic orbits in the classical phase space is a precursor to the creation of a new quasibound state in the quantum system. As we increase the laser amplitude, the residues of the quasibound states become contracted into regions near the fixed points of the bifurcation and cause stabilization of the electron.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.