Abstract

Chorus emission in planetary magnetospheres is taken as working paradigm to motivate a short tutorial trip through theoretical plasma physics methods and their applications. Starting from basic linear theory, readers are first made comfortable with whistler wave packets and their propagation in slowly varying weakly non-uniform media, such as the Earth’s magnetosphere, where they can be amplified by a population of supra-thermal electrons. The nonlinear dynamic description of energetic electrons in the phase space in the presence of self-consistently evolving whistler fluctuation spectrum is progressively introduced by addressing renormalization of the electron response and spectrum evolution equations. Analytical and numerical results on chorus frequency chirping are obtained and compared with existing observations and particle-in-cell simulations. Finally, the general theoretical framework constructed during this short trip through chorus physics is used to draw analogies with condensed matter and laser physics as well as magnetic confinement fusion research. Discussing these analogies ultimately presents plasma physics as an exciting cross-disciplinary field to study.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.