Abstract
Abstract Vibration energy harvester (VEH) has proven to be a favorable potential technique to supply continuous energy from ambient vibrations and its performance is greatly influenced by the design of potential structures. A snap-through mechanism is used in an electromagnetic energy harvester to improve its effectiveness. It mainly comprises of three springs that are configured so that the potential energy of the system has two stable equilibrium points. In this work, a harmonically base excited snap-through electromagnetic vibration energy harvester is investigated by analytical and semi-analytical method. The approximate analytical outcomes are qualitatively and quantitatively supported by semi-analytical method using multi-term harmonic balance method (MHBM).The bifurcation diagram of response current shows that snap-through electromagnetic vibration energy harvesters exhibits periodic intrawell, interwell and chaotic motion when the system parameters are varied. The influence of system parameters on the response of snap-through electromagnetic vibration energy harvester are examined. Nonlinearity produced by the snap-through oscillator improves energy harvesting so that the snap-through electromagnetic energy harvester can outperform the linear energy harvester in the similar size under harmonic excitation. A fitness function was formulated and optimization of the selected parameters was done using genetic algorithm. The parametric optimization leads to a considerable improvement in the harvested current from the system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.