Abstract
Finite amplitude dynamics of ships in head seas due to parametric instabilities is a subject of renewed interest with an increasing demand of operation in severe and variable environmental conditions. In this current study we investigate the nonlinear dynamics and internal resonances of a ship with a rectangular cross-section in head seas. We employ an asymptotic averaging method to obtain the slowly varying system evolution dynamics for the weakly nonlinear response, complemented by numerical integration in the strongly nonlinear regime. A weakly nonlinear frequency response is obtained analytically for a principal parametric resonance and a 1:1 roll—pitch internal resonance. Comparison of results with three degrees of freedom numerical simulations reveals a good fit. A strongly nonlinear numerical analysis reveals that beyond the stability thresholds, the system’s responses included quasiperiodic dynamics. This combined approach resolves both parametric instabilities and internal resonances induced for both weak and finite nonlinear interactions, and culminates with criteria for orbital stability thresholds describing the onset of quasiperiodic response and magnification of energy transfer between coupled pitch-heave and ship roll.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Offshore Mechanics and Arctic Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.