Abstract

This paper presents the work devoted to the study of the operation of a miniaturized membrane Stirling engine. Indeed, such an engine relies on the dynamic coupling of the motion of two membranes to achieve a prime mover Stirling thermodynamic cycle. The modelling of the system introduces the large vibration amplitudes of the membrane as well as the nonlinear dissipative effects associated to the fluid flow within the engine. The nonlinearities are expressed as polynomial functions with quadratic and cubic terms. This paper displays the stability analysis to predict the starting of the engine and the instability problem which leads to the steady-state behaviour. The centre manifold–normal form theory is used to obtain the simplest expression for the limit cycle amplitudes. The approach allows the reduction of the number of equations of the original system in order to obtain a simplified system, without loosing the dynamics of the original system as well as the contributions of nonlinear terms. The model intends to be used as a semi-analytical design tool for the optimization of miniaturized Stirling machines from the starting to the steady operation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.