Abstract
Time reversal of vast classes of phenomena has direct implications with predictability, causality and the second principle of thermodynamics. We propose a new method of investigating reversibility in time series data through the instance of a paradigmatic dissipative nonlinear dynamical system, namely the logistic map xt+1=1−axt2. The method splits the original data into two series, one symmetrical and the other antisymmetrical with respect to time. A close relation is revealed between time reversibility and the sensitivity to the initial conditions. Indeed, depending on the initial condition and the size of the time series, time reversal can enable the recovery, within a small error bar, of past information when the Lyapunov exponent is non-positive, notably at the Feigenbaum point (edge of chaos), where weak chaos is known to exist. Past information is gradually lost for increasingly large Lyapunov exponent (strong chaos), notably at a=2 where it attains a large value.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Chaos, Solitons and Fractals: the interdisciplinary journal of Nonlinear Science, and Nonequilibrium and Complex Phenomena
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.