Abstract

In this paper, the nonlinear vibration characteristics of a moving printing membrane under external excitation are studied. Based on the Von Karman nonlinear plate theory, the nonlinear vibration equation of the axial motion membrane under the external excitation is deduced. The Galerkin’s method is used to discretize the vibration differential equations of the membrane, and then the state equation of the system is obtained. The state equation of the system is numerically solved by the fourth-order Runge–Kutta method. The relationship between the nonlinear vibration characteristics and the amplitude of external excitation, damping coefficient, and aspect ratio of the printing membrane is analyzed by using the time histories, phase-plane portraits, Poincare maps, and bifurcation diagrams. Chaotic intervals and the stable working range of the moving membrane are obtained. This study provides a theoretical basis for predicting and controlling the stability of the membrane.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.