Abstract
Soft sensor has been extensively utilized in industrial processes for prediction of key quality variables. To build an accurate virtual sensor model, it is very significant to model the dynamic and nonlinear behaviors of process sequential data properly. Recently, a long short-term memory (LSTM) network has shown great modeling ability on various time series, in which basic LSTM units can handle data nonlinearities and dynamics with a dynamic latent variable structure. However, the hidden variables in the basic LSTM unit mainly focus on describing the dynamics of input variables, which lack representation for the quality data. In this paper, a supervised LSTM (SLSTM) network is proposed to learn quality-relevant hidden dynamics for soft sensor application, which is composed of basic SLSTM unit at each sampling instant. In the basic SLSTM unit, the quality and input variables are simultaneously utilized to learn the dynamic hidden states, which are more relevant and useful for quality prediction. The effectiveness of the proposed SLSTM network is demonstrated on a penicillin fermentation process and an industrial debutanizer column.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.