Abstract

It is well known that nonlinear dynamic response optimization using a conventional optimization algorithm is fairly difficult and expensive for the gradient or non-gradient based optimization methods because many nonlinear dynamic analyses are required. Therefore, it is quite difficult to find practical large scale examples with many design variables and constraints for nonlinear dynamic response structural optimization. The equivalent static loads (ESLs) method is newly proposed and applied to nonlinear dynamic response optimization. The equivalent static loads are defined as the linear static load sets which generate the same response field in linear static analysis as that from nonlinear dynamic analysis. The ESLs are made from the results of nonlinear dynamic analysis and used as external forces in linear static response optimization. Then the same response from nonlinear dynamic analysis can be considered throughout linear static response optimization. The updated design from linear response optimization is used again in nonlinear dynamic analysis and the process proceeds in a cyclic manner until the convergence criteria are satisfied. Several examples are solved to validate the method. The results are compared to those of the conventional method with sensitivity analysis using the finite difference method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call