Abstract

This paper presents full-scale modeling and nonlinear dynamic analysis of sandwich plates with auxetic 3D lattice core, which is further designed to possess three functionally graded (FG) configurations through the plate thickness direction for the first time. The effective Poisson’s ratio (EPR) and fundamental frequencies of auxetic 3D lattice metamaterials are analyzed and verified by static and vibration tests using specimens fabricated by 3D printing. Considering the large deflection nonlinearity of sandwich plates and the accompanying changes in effective properties of lattice microstructures, full-scale FE modeling and nonlinear dynamic thermal–mechanical analysis are performed, with material properties assumed to be temperature dependent. Numerical results revealed that the auxetic core can significantly reduce the dynamic deflections, in comparison with its counterpart with positive EPR. Furthermore, FG configurations have distinct effects on the natural frequencies and dynamic deflection–time curves of sandwich plates, along with EPR–deflection curves in the large deflection region.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call