Abstract

A nonlinear MEMS multimass sensor is numerically investigated, designed as a single input-single output (SISO) system consisting of an array of nonlinear microcantilevers clamped to a shuttle mass which, in turn, is constrained by a linear spring and a dashpot. The microcantilevers are made of a nanostructured material, a polymeric hosting matrix reinforced by aligned carbon nanotubes (CNT). The linear as well as the nonlinear detection capabilities of the device are explored by computing the shifts of the frequency response peaks caused by the mass deposition onto one or more microcantilever tips. The frequency response curves of the device are obtained by a pathfollowing algorithm applied to the reduced-order model of the system. The microcantilevers are described by a nonlinear Euler-Bernoulli inextensible beam theory, which is enriched by a meso-scale constitutive law of the nanocomposite. In particular, the microcantilever constitutive law depends on the CNT volume fraction suitably used for each cantilever to tune the frequency bandwidth of the whole device. Through an extensive numerical campaign, the mass sensor sensitivity estimated in the linear and nonlinear dynamic range shows that, for relatively large displacements, the accuracy of the added mass detectability can be improved due to the larger nonlinear frequency shifts at resonance (up to 12%).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.