Abstract

In this article, the nonlinear dynamic instability of stiffened laminated composite plates is studied in the finite element (FE) framework subjected to uniform in-plane harmonic patch loading. The harmonic load is applied to the two opposite sides of the stiffened plate. The linear and nonlinear time-history response analysis is also studied. The skin and the stiffener are modeled using an eight-node isoparametric degenerated shell element and a three-node curved beam element, respectively. A system of matrices is developed by considering the Green–Langrange strain–displacement relationship. In the linear case, the Bolotin method is used to analyze the dynamic instability region (DIR). The nonlinear instability behavior of the laminated composite stiffened plate is studied by applying the Incremental Harmonic Balance Method (IHB). The Newmark-β method is used to solve the linear and nonlinear time-history response equations to understand the instability behavior of the stiffened plates. The effect of the parameters such as the length of the in-plane loading patch, varying number of stiffeners in -direction and the position of the patch on the nonlinear vibrations and nonlinear dynamic response is examined.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call