Abstract

In the present work, nonlinear dynamics of symmetric rectangular honeycomb sandwich thin panel is investigated. The nonlinear governing equations of the thin panel are derived by using Hamilton’s principle and Reddy’s third-order shear deformation theory. After that, the Galerkin method is used to discretize the equation of motion, resulting in a set of ordinary differential equations with respect to time. The ordinary differential equations are solved analytically by utilizing the homotopy analysis method. The influence of structural parameters to the nonlinear frequencies of the symmetric rectangular honeycomb sandwich panel with simply supported boundaries along all four edges is discussed by using the analytic approximation method. Our findings demonstrate that the nonlinear frequency ratio decreases first and then increases with the increase of the width-to-length ratio and thickness-to-length ratio. When the width-to-length ratio is greater than 10, the nonlinear frequency ratio remains almost unchanged with the further increase of width-to-length ratio.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.