Abstract

With the development of industrial technology, acceleration sensors have a wide range of applications. The application environment has strict requirements on acceleration sensor, which needs it to get accurate input and output response in complexity. According to the Hammerstein model, this paper studies the dynamic nonlinear relationship between the output voltage and the input acceleration of the acceleration sensor that can be divided into static nonlinear component and dynamic linear component. We combine the least square method with adaptive neural network to calculate the parameters of static nonlinear and dynamic linear components. The least square method is used to improve the training performance of the network and avoid the network falling into the local minimum of the traditional neural network. Experimental results show that compared with other methods, the proposed method has the advantages of less training steps and strong approximation ability, and the algorithm is less affected by external noise. This method can realize nonlinear system identification of acceleration sensor and provide reliable basis for compensation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.