Abstract

This paper is concerned with the nonlinear dynamic buckling of sandwich functionally graded circular cylinder shells filled with fluid. Governing equations are derived using the classical shell theory and the geometrical nonlinearity in von Karman–Donnell sense is taken into account. Solutions of the problem are established by using Galerkin's method and Runge–Kutta method. Effects of thermal environment, geometric parameters, volume fraction index $ k $ and fluid on dynamic critical loads of shells are investigated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.