Abstract

An atomistic-continuum multiscale approach is used to simulate the nonlinear dynamic behavior of simply-supported single layer graphene sheets subject to a uniformly distributed out-of-plane load. The dynamic equation of motion is derived and solved by the Newmark-β method. The evolution of surface morphology and the nonlinear effects in terms of geometrical and material nonlinearities can be captured by iteratively updating the system stiffness. It is found that the natural frequencies of simply-supported graphene sheets almost remain constant when the external load is in a small range. The present solutions are in good agreement with those results obtained from the linear vibration analysis by a semi-analytical method. As the applied load increases continuously, this gives rise to an elongation of graphene to increase the natural frequency. Based on the numerical approach, the surface morphology evolution of graphene can be visualized and explored.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.