Abstract

Electrostatically actuated resonant microelectromechanical systems (MEMS) sensors have gotten significant attention due to their geometric simplicity and broad applicability. In this paper, nonlinear responses and dynamics of the electrostatically actuated MEMS resonant sensors under two-frequency parametric and external excitations are presented. The presented model and methodology enable simulation of the steady-state dynamics of electrostatic MEMS undergoing small motions. Response and dynamics of the MEMS resonator to a combination resonance are studied. The responses of the system at steady-state conditions and their stability are investigated using the method of multiple scales. The results showing the effect of varying the dc bias, the squeeze film damping, cubic stiffness, and ac excitation amplitude on the frequency response curves, resonant frequencies and nonlinear dynamic characteristics are given in detail. Frequency response, resonant frequency and peak amplitude are examined for variation of the dynamic parameters involved. This investigation provides an understanding of the nonlinear dynamic characteristics of microbeam-based resonant sensors in MEMS

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.