Abstract

The Self-propagating High-temperature Synthesis(SHS) process is a nonlinear one far from thermodynamic equilibrium, many nonlinear structures present in the process. After SHS processes of Ti-C-Fe and Ni-Si systems have been studied by the numbers, the effects of initial parameter conditions on nonlinear structure have been gained. On the base of establishing the model of combustion reaction dynamic characteristics, backward finite-difference approximation equations and central finite-difference approximation equations were applied to numerically calculate and simulate the characteristics of combustion wave and its’ change rules in the SHS process. All the experimental results are consistent with the simulative results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.