Abstract
In this research, the nonlinear propagation of dust-ion acoustic (DIA) periodic travelling waves in a dusty plasma consisting of cold ions, stationary charged dust grains, and two temperature superthermal electrons is theoretically studied. A nonlinear Zakharov-Kuznetsov equation, which describes nonlinear dust-ion acoustic waves, is derived using a reductive perturbation method. Furthermore, the bifurcation theory has been employed to study the nonlinear propagation of DIA periodic travelling wave solutions. In the proposed model, the co-existence of both compressive and rarefactive DIA periodic travelling waves are found. The numerical investigations illustrate that the characteristics of nonlinear DIA periodic travelling waves strongly depend on the temperature ratio, both the concentration and the superthermality of cold electrons, the ion cyclotron frequency, the direction cosines of wave vector k along z axis, and the concentration of dusty grains. The present investigation can help in better understanding of nonlinear DIA periodic travelling waves in astrophysical environments with two temperature superthermal electrons such as Saturn's magnetosphere.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.