Abstract

SummaryVarious solvent-based recovery processes for bitumen and heavy-oil reservoirs have gained much interest in recent years. In these processes, viscosity reduction is attained not only because of thermal effects, but also by dilution of bitumen with a solvent. Accurate characterization of the oil/solvent-mixture viscosity is critical for accurate prediction of recovery and effectiveness of such processes. There are varieties of models designed to predict and correlate the mixture viscosities. Among them, the linear log mixing (Arrhenius) model is the most commonly used method in the oil industry. This model, originally proposed for light oils, often show poor performance (40 to 60% error) when applied to highly viscous fluids such as heavy oil and bitumen. The modified Arrhenius model, called the nonlinear log mixing model, gives slightly better predictions compared with the original Arrhenius model. However, the predictions still might not be acceptable because of large deviations from measured experimental data. Calculated mixture-phase viscosity has a significant effect on flow calculations in commercial reservoir simulators. Underestimation of mixture viscosities leads to overprediction of oil-production rates. Using such mixing models in reservoir simulation can lead to inaccuracy in mixture viscosities and hence large uncertainty in model results. In the present study, different correlations and mixing rules available in the literature are evaluated against the mixture-viscosity data for a variety of bitumen/solvent systems. A new form (nonlinear) of the double-log mixing rule is proposed, which shows a significant improvement over the existing models on predicting viscosities of bitumen/solvent mixtures, especially at high temperatures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call