Abstract
In this brief, a dynamic model of a mobile wheeled inverted pendulum (MWIP) system is improved considering friction forces, and a nonlinear disturbance observer (NDO)-based dynamic surface controller is investigated to control the MWIP system. Using a coordinate transformation, this non-Class-I type underactuated system is presented as a semistrict feedback form, which is convenient for dynamic surface controller design. A dynamic surface controller together with an NDO is designed to stabilize the underactuated plant. The proposed approach can compensate the external disturbances and the model uncertainties to improve the system performance significantly. The stability of the closed-loop MWIP system is proved by Lyapunov theorem. Experiment results are presented to illustrate the feasibility and efficiency of the proposed method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.