Abstract

When a thrombus breaks off and embolizes it can occlude vital vessels such as those of the heart, lung, or brain. These thromboembolic conditions are responsible for 1 in 4 deaths worldwide. Thrombus resistance to embolization is driven by its intrinsic fracture toughness as well as other, non-surface-creating dissipative mechanisms. In our current work, we identify and quantify these latter mechanisms toward future studies that aim to delineate fracture from other forms of dissipation. To this end, we use an in vitro thrombus mimic system to produce whole blood clots and explore their dissipative mechanics under simple uniaxial extension, cyclic loading, and stress-relaxation. We found that whole blood clots exhibit Mullins-like effect, hysteresis, permanent set, strain-rate dependence, and nonlinear stress-relaxation. Interestingly, we found that performing these tests under dry or submerged conditions did not change our results. However, performing these tests under room temperature or body temperature conditions yielded differences. Importantly, because we use venous blood our work is most closely related to venous in vivo blood clots. Overall, we have demonstrated that whole blood clots show several dissipative phenomena - similarly to hydrogels - that will be critical to our understanding of thrombus embolization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.