Abstract
The three-dimensional finite-difference time-domain method that can handle dispersive and dynamic nonlinear-gain media is proposed and realized. The effect of carrier diffusion is included through the laser rate equations. Through this three-dimensional nonlinear gain FDTD method, rich laser-dynamics behaviors, such as the lasing threshold, the relaxation oscillation, and the spatial hole burning, are directly observed from a hexapole mode.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.