Abstract
We present a new manifold learning algorithm called Local Orthogonality Preserving Alignment (LOPA). Our algorithm is inspired by the Local Tangent Space Alignment (LTSA) method that aims to align multiple local neighborhoods into a global coordinate system using affine transformations. However, LTSA often fails to preserve original geometric quantities such as distances and angles. Although an iterative alignment procedure for preserving orthogonality was suggested by the authors of LTSA, neither the corresponding initialization nor the experiments were given. Procrustes Subspaces Alignment (PSA) implements the orthogonality preserving idea by estimating each rotation transformation separately with simulated annealing. However, the optimization in PSA is complicated and multiple separated local rotations may produce globally contradictive results. To address these difficulties, we first use the pseudo-inverse trick of LTSA to represent each local orthogonal transformation with the unified global coordinates. Second the orthogonality constraints are relaxed to be an instance of semi-definite programming (SDP). Finally a two-step iterative procedure is employed to further reduce the errors in orthogonal constraints. Extensive experiments show that LOPA can faithfully preserve distances, angles, inner products, and neighborhoods of the original datasets. In comparison, the embedding performance of LOPA is better than that of PSA and comparable to that of state-of-the-art algorithms like MVU and MVE, while the runtime of LOPA is significantly faster than that of PSA, MVU and MVE.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.