Abstract

Metasurfaces provide new and promising mechanisms with which to control and manipulate light at the nanoscale. While most metasurfaces are designed to operate in the linear regime, it was recently shown that such metasurfaces may also generate nonlinear signals by manipulation of the higher-order susceptibility terms. As such, metasurfaces can generate additional harmonics without the need for light propagation, as typically occurs in nonlinear crystals. While such demonstrations typically rely on the nonlinear properties of metals, we hereby report the design, fabrication, and experimental characterization of a resonant dielectric metasurface made of amorphous silicon to create and manipulate second harmonic light and control its diffraction patterns. As shown in the paper, the second harmonic generation of light follows selection rules that rely on the asymmetry of the meta-atom. Given the fact that silicon crystals are centrosymmetric, the generation of the second harmonic signal in amorphous silicon is intriguing. In fact, the second harmonic signal is generated mostly from the surface of the meta-atom. It is the use of nanostructures that increases the surface-to-volume ratio and enables second harmonic generation. Additionally, the meta-atom is designed to exploit its spectral resonances in the principal and the second harmonic frequencies for providing electromagnetic field enhancement, which assists in boosting the generation of second harmonic signals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.