Abstract

A method is presented which enables one to obtain and solve certain classes of nonlinear differential−difference equations. The introduction of a new discrete eigenvalue problem allows the exact solution of the self−dual network equations to be found by inverse scattering. The eigenvalue problem has as its singular limit the continuous eigenvalue equations of Zakharov and Shabat. Some interesting differences arise both in the scattering analysis and in the time dependence from previous work.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.