Abstract
In a Bayesian network with continuous variables containing a variable(s) that is a conditionally deterministic function of its continuous parents, the joint density function does not exist. Conditional linear Gaussian distributions can handle such cases when the deterministic function is linear and the continuous variables have a multi-variate normal distribution. In this paper, operations required for performing inference with nonlinear conditionally deterministic variables are developed. We perform inference in networks with nonlinear deterministic variables and non-Gaussian continuous variables by using piecewise linear approximations to nonlinear functions and modeling probability distributions with mixtures of truncated exponentials (MTE) potentials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.