Abstract
Abstract In a previous paper, we computed the energy density and the nonlinear energy cascade rate for transverse kink waves using Elsässer variables. In this paper, we focus on the standing kink waves, which are impulsively excited in coronal loops by external perturbations. We present an analytical calculation to compute the damping time due to the nonlinear development of the Kelvin–Helmholtz instability. The main result is that the damping time is inversely proportional to the oscillation amplitude. We compare the damping times from our formula with the results of numerical simulations and observations. In both cases we find a reasonably good match. The comparison with the simulations shows that the nonlinear damping dominates in the high amplitude regime, while the low amplitude regime shows damping by resonant absorption. In the comparison with the observations, we find a power law inversely proportional to the amplitude η −1 as an outer envelope for our Monte Carlo data points.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.