Abstract
Nonlinear oscillations of particle’s energy occur when a particle stays in a resonance zone. In this work, we found that collisionless heating of particles occurs when they pass the microwave beam at first, second, and third harmonic resonances. It is found that the net energy gain of particles from the microwaves is inversely proportional to the wave frequency. It is also found that the net energy gain is dependent on the microwave beam width. The energy gain of particles from a single pass through a resonance zone has been formulated analytically. A numerical calculation has been performed and the results are in good agreement with the analytic calculation. Both analytic and numerical calculations show a strong frequency dependence and a beam width dependence of nonlinear cyclotron resonance heating.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.