Abstract

Extensive development of micro/nano-electromechanical systems (MEMS/NEMS) has resulted in technologies that exhibit excellent performance over a wide range of applications in both applied (e.g. sensing, imaging, timing and signal processing) and fundamental sciences (e.g. quantum-level problems). Many of these outstanding applications benefit from resonance phenomena by employing micro/nanoscale mechanical resonators often fabricated into a beam-, membrane- or plate-type structure. During the early development stage, one of the vibrational modes (typically the fundamental mode) of a resonator is considered in the design and application. In the past decade, however, there has been a growing interest in using more than one vibrational mode for the enhanced functionality of MEMS/NEMS. In this paper, we review recent research efforts to investigate the nonlinear coupling and energy transfers between multiple modes in micro/nano-mechanical resonators, focusing especially on intermodal coupling, internal resonance and synchronization.This article is part of the theme issue 'Nonlinear energy transfer in dynamical and acoustical systems'.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call