Abstract

Abstract In the previous model for small deformation multistable mechanisms, the axial displacement induced by structural vertical deflection is very small and has not been considered. However, for large deformation magnetic based multistable mechanisms, such axial displacement can directly result in the great deviation in predicting the nonlinear magnetic coupling mechanics. To enlarge the multistability design space, an accurate mathematical model was established for analyzing the nonlinear magnetic–mechanical coupling mechanics. To demonstrate the multistability analyzing procedure, a rotation constrained tristable mechanism was introduced which is also called mechanical memory element that can remember three different mechanical states including structural configurations, stable positions, and threshold triggering forces. By theoretically analyzing the influence of the large deformation induced position variation of multiple magnets on the magnetic field distribution and strength, the nonlinear force-displacement characteristic was obtained numerically, which was in good agreement with experimental results, thus validating the feasibility and practicability of the proposed nonlinear coupling mechanical model. Additionally, the multistable features such as stable positions, threshold forces and motion modes can be adjusted in a wide range for switching applications by just adjusting the magnets' arrangement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.